Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 581-5, 2012.
Article in English | WPRIM | ID: wpr-635984

ABSTRACT

The inhibitory effects of diallyl sulfide (DAS) derived from allicin on in vitro and in vivo proliferation of human osteosarcoma MG-63 cells and the action mechanism, and the influence of DAS on invasive capability of MG-63 cells were investigated in order to search for the novel medicines for osteosarcoma. In the in vitro experiment, MG-63 cells were treated with different concentrations of DSA, and the morphological changes of MG-63 cells were observed under an inverted phase microscope. MTT method was used to assay the proliferation of MG-63 cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the VEGF mRNA expression level in MG-63 cells. By using Transwell invasion assay, the influence of DAS on invasive ability of MG-63 cells was tested. In the in vivo experiment, the nude mice MG-63 cells tumor-bearing model was established, and different concentrations of DAS were injected beside the tumor. Twenty-one days after treatment, the mice were killed, the tumor size and tumor inhibition rate were calculated. The microvessel density (MVD) was determined by using immunohistochemistry. In the in vitro experiment, different concentrations of DAS could obviously inhibit proliferation of MG-63 cells in a time- and concentration-dependent manner. RT-PCR revealed that the expression levels of VEGF mRNA in DSA groups (different concentrations) were significant reduced as compared with those in control group (all P<0.05). Transwell invasion assay indicated that in 20 and 40 μg/mL DAS groups, the number of migratory cells was 91.4±8.3 and 81.8±7.4 respectively, which was significantly declined as compared with that in control group (150.4±14.7, both P<0.05). In the in vivo experiment, DAS could significantly suppress the growth of MG-63 tumor-bearing tissue. Immunohistochemistry demonstrated that different concentrations (20 and 40 μg/mL) of DAS could significantly decrease MVD of MG-63 tumor-bearing tissue (all P<0.05). It was suggested that DAS could inhibit the growth of MG-63 cells probably by suppressing the expression of VEGF mRNA.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 581-585, 2012.
Article in English | WPRIM | ID: wpr-233116

ABSTRACT

The inhibitory effects of diallyl sulfide (DAS) derived from allicin on in vitro and in vivo proliferation of human osteosarcoma MG-63 cells and the action mechanism, and the influence of DAS on invasive capability of MG-63 cells were investigated in order to search for the novel medicines for osteosarcoma. In the in vitro experiment, MG-63 cells were treated with different concentrations of DSA, and the morphological changes of MG-63 cells were observed under an inverted phase microscope. MTT method was used to assay the proliferation of MG-63 cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the VEGF mRNA expression level in MG-63 cells. By using Transwell invasion assay, the influence of DAS on invasive ability of MG-63 cells was tested. In the in vivo experiment, the nude mice MG-63 cells tumor-bearing model was established, and different concentrations of DAS were injected beside the tumor. Twenty-one days after treatment, the mice were killed, the tumor size and tumor inhibition rate were calculated. The microvessel density (MVD) was determined by using immunohistochemistry. In the in vitro experiment, different concentrations of DAS could obviously inhibit proliferation of MG-63 cells in a time- and concentration-dependent manner. RT-PCR revealed that the expression levels of VEGF mRNA in DSA groups (different concentrations) were significant reduced as compared with those in control group (all P<0.05). Transwell invasion assay indicated that in 20 and 40 μg/mL DAS groups, the number of migratory cells was 91.4±8.3 and 81.8±7.4 respectively, which was significantly declined as compared with that in control group (150.4±14.7, both P<0.05). In the in vivo experiment, DAS could significantly suppress the growth of MG-63 tumor-bearing tissue. Immunohistochemistry demonstrated that different concentrations (20 and 40 μg/mL) of DAS could significantly decrease MVD of MG-63 tumor-bearing tissue (all P<0.05). It was suggested that DAS could inhibit the growth of MG-63 cells probably by suppressing the expression of VEGF mRNA.


Subject(s)
Humans , Allyl Compounds , Pharmacology , Cell Line, Tumor , Cell Proliferation , Neoplasm Invasiveness , Osteosarcoma , Drug Therapy , Sulfides , Pharmacology
3.
Chinese Journal of Trauma ; (12): 406-408, 2011.
Article in Chinese | WPRIM | ID: wpr-412825

ABSTRACT

Objective To investigate the incidence, clinical symptoms, correlative risk factors and prognosis of dysautonomia in patients with severe traumatic brain injury. Methods A total of 142patients with severe traumatic brain injury treated from January 2008 to March 2010 were retrospectively surveyed to compare the clinical features of dysautonomia group and control group. Logistic regression was used to analyze the risk factors for dysautonomia. At 6 months post-trauma, the Glasgow Outcome Score (GOS) was used to measure the outcome. Results Of all the patients, 94 patients survived and were followed up. There were 16 patients ( 17% ) diagnosed as dysautonomia depended on clinical symptoms,with statistical difference in aspects of GCS, coma duration, ICU time and average length of stay (ALOS)(P < 0.05). The patients with dysautonomia tended to have poorer outcome ( P < 0.05 ) and showed a positive association with diffuse axonal injury (DAI) ( OR = 11. 25, CI 7.65-16.54 ). Conclusion Dysautonomia has high incidence and is usually severe in patients with severe traumatic brain injury,when DAI may contribute to its occurrence and result in poor prognosis.

4.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 504-8, 2011.
Article in English | WPRIM | ID: wpr-635420

ABSTRACT

This study examined the effects of ω-3 polyunsaturated fatty acid (ω-3PUFA) on the expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4) and some related inflammatory factors in peripheral blood mononuclear cells (PBMCs) of patients with early-stage severe multiple trauma. Thirty-two patients who were admitted to the Department of Traumatic Surgery, Tongji Hospital (Wuhan, China) between May 2010 and November 2010, and diagnosed as having severe multiple trauma with a injury severity score (ISS) no less than 16, were enrolled in the study and divided into two groups at random (n=16 in each): ω-3PUFA group and control group in which routine parenteral nutrition supplemented with ω-3PUFA or not was administered to the patients in two groups for consecutive 7 days. Peripheral blood from these patients was collected within 2 h of admission (day 0), and 1, 3, 5 and 7 days after the nutritional support. PBMCs were isolated and used for detection of the mRNA and protein expression of TLR2 and TLR4 by using real-time PCR and flow cytometry respectively, the levels of NF-κB by quantum dots-based immunofluorescence assay, the levels of TNF-α, IL-2, IL-6 and COX-2 by ELISA, respectively. The results showed that the mRNA and protein expression of TLR2 and TLR4 in PBMCs was significantly lower in ω-3PUFA group than in control group 5 and 7 days after nutrition support (both P<0.05). The levels of TNF-α, IL-2, IL-6 and COX-2 were found to be substantially decreased in PBMCs in ω-3PUFA group as compared with control group at 5th and 7th day (P<0.05 for all). It was concluded that ω-3PUFA can remarkably decrease the expression of TLR2, TLR4 and some related inflammatory factors in NF-κB signaling pathway in PBMCs of patients with severe multiple trauma, which suggests that ω-3PUFA may suppress the excessive inflammatory response meditated by the TLRs/NF-κB signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL